59 research outputs found

    Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer (OvCa) most often derives from ovarian surface epithelial (OSE) cells. Several lines of evidence strongly suggest that increased exposure to progesterone (P4) protects women against developing OvCa. However, the underlying mechanisms of this protection are incompletely understood.</p> <p>Methods</p> <p>To determine downstream gene targets of P4, we established short term <it>in vitro </it>cultures of non-neoplastic OSE cells from six subjects, exposed the cells to P4 (10<sup>-6 </sup>M) for five days and performed transcriptional profiling with oligonucleotide microarrays containing over 22,000 transcripts.</p> <p>Results</p> <p>We identified concordant but modest gene expression changes in cholesterol/lipid homeostasis genes in three of six samples (responders), whereas the other three samples (non-responders) showed no expressional response to P4. The most up-regulated gene was <it>TMEM97 </it>which encodes a transmembrane protein of unknown function (MAC30). Analyses of outlier transcripts, whose expression levels changed most significantly upon P4 exposure, uncovered coordinate up-regulation of 14 cholesterol biosynthesis enzymes, insulin-induced gene 1, low density lipoprotein receptor, <it>ABCG1</it>, endothelial lipase, stearoyl- CoA and fatty acid desaturases, long-chain fatty-acyl elongase, and down-regulation of steroidogenic acute regulatory protein and <it>ABCC6</it>. Highly correlated tissue-specific expression patterns of <it>TMEM97 </it>and the cholesterol biosynthesis genes were confirmed by analysis of the GNF Atlas 2 universal gene expression database. Real-time quantitative RT-PCR analyses revealed 2.4-fold suppression of the <it>TMEM97 </it>gene expression in short-term cultures of OvCa relative to the normal OSE cells.</p> <p>Conclusion</p> <p>These findings suggest that a co-regulated transcript network of cholesterol/lipid homeostasis genes and <it>TMEM97 </it>are downstream targets of P4 in normal OSE cells and that <it>TMEM97 </it>plays a role in cholesterol and lipid metabolism. The P4-induced alterations in cholesterol and lipid metabolism in OSE cells might play a role in conferring protection against OvCa.</p

    Comparison of RCAS1 and metallothionein expression and the presence and activity of immune cells in human ovarian and abdominal wall endometriomas

    Get PDF
    BACKGROUND: The coexistence of endometrial and immune cells during decidualization is preserved by the ability of endometrial cells to regulate the cytotoxic immune activity and their capability to be resistant to immune-mediated apoptosis. These phenomena enable the survival of endometrial ectopic cells. RCAS1 is responsible for regulation of cytotoxic activity. Metallothionein expression seems to protect endometrial cells against apoptosis. The aim of the present study was to evaluate RCAS1 and metallothionein expression in human ovarian and scar endometriomas in relation to the presence of immune cells and their activity. METHODS: Metallothionein, RCAS1, CD25, CD69, CD56, CD16, CD68 antigen expression was assessed by immunohistochemistry in ovarian and scar endometriomas tissue samples which were obtained from 33 patients. The secretory endometrium was used as a control group (15 patients). RESULTS: The lowest metallothionein expression was revealed in ovarian endometriomas in comparison to scar endometriomas and to the control group. RCAS1 expression was at the highest level in the secretory endometrium and it was at comparable levels in ovarian and scar endometriomas. Similarly, the number of CD56-positive cells was lower in scar and ovarian endometriomas than in the secretory endometrium. The highest number of macrophages was found in ovarian endometriomas. RCAS1-positive macrophages were observed only in ovarian endometriomas. CD25 and CD69 antigen expression was higher in scar and ovarian endometriomas than in the control group. CONCLUSION: The expression of RCAS1 and metallothionein by endometrial cells may favor the persistence of these cells in ectopic localization both in scar following cesarean section and in ovarian endometriosis

    MUC2 polymorphisms are associated with endometriosis development and infertility: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucins are highly glycosylated proteins protecting and lubricating epithelial surface of respiratory, gastrointestinal and reproductive tracts. Members of the mucin protein family have been suggested to play an important role in development of endometriosis and infertility. This study investigates genetic association of mucin2 (<it>MUC2</it>) with the risk of endometriosis and endometriosis-related infertility.</p> <p>Methods</p> <p>This case-control study was conducted at China Medical University Hospital, with 195 endometriosis patients and 196 healthy controls enrolled. Genotyping of six SNPs (rs2856111, rs11245936, rs10794288, rs10902088, rs7103978 and rs11245954) within <it>MUC2 </it>gene were performed by using <it>Taqman </it>genotyping assay; individual SNP and haplotype associations with endometriosis and endometriosis-related infertility were assessed by <it>χ</it><sup>2 </sup>test.</p> <p>Results</p> <p>Endometriosis patients exhibit significantly lower frequency of the rs10794288 C allele, the rs10902088 T allele and the rs7103978 G allele (<it>P </it>= 0.030, 0.013 and 0.040, respectively). In addition, the rs10794288 C allele and the rs10902088 T allele were also less abundant in patients with infertility versus fertile ones (<it>P </it>= 0.015 and 0.024, respectively). Haplotype analysis of the endometriosis associated SNPs in <it>MUC2 </it>also showed significantly association between the most common haplotypes and endometriosis or endometriosis-related infertility.</p> <p>Conclusions</p> <p><it>MUC2 </it>polymorphisms, especially rs10794288 and rs10902088, are associated with endometriosis as well as endometriosis-related infertility. Our data present MUC2 as a new candidate involved in development of endometriosis and related infertility in Taiwanese Han women.</p
    • 

    corecore